skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Matthews, Dennis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Contact-based cardiac motion detection using Quadrature Doppler radar faces a challenge of the I/Q-formed non-arc constellation. In this work, a hypothesis is brought forward that such complicated constellation originates from not one, but two moving targets. The dual-motion model may very well explain that contact-based Doppler radar detects both atrium and ventricle motions during cardiac cycles. In this work, dual-motion simulation and phantom measurements are presented, verifying that the atrial-ventricular motions are the reason that I/Q baseband signals transcribe a complex non-arc constellation. It offers the first evidence that contact-based Doppler radar measures actual heart motion. 
    more » « less
  2. In this paper a phase shifter based multi-arc circle fitting method was proposed to improve accuracy of Doppler radar remote motion sensing. Experiments were conducted to validate the approach by measuring displacement of 3 mm using 2.4 GHz quadrature continuous wave (CW) Doppler radar. It was demonstrated that mean error drops from 4.529% to 1.073% when multiple shifting arcs are utilized to enhance detection accuracy. A greater improvement in accuracy is observed when more arcs are applied. 
    more » « less